Mu desynchronization during observation and execution of facial expressions in 30-month-old children
نویسندگان
چکیده
Simulation theories propose that observing another's facial expression activates sensorimotor representations involved in the execution of that expression, facilitating recognition processes. The mirror neuron system (MNS) is a potential mechanism underlying simulation of facial expressions, with like neural processes activated both during observation and performance. Research with monkeys and adult humans supports this proposal, but so far there have been no investigations of facial MNS activity early in human development. The current study used electroencephalography (EEG) to explore mu rhythm desynchronization, an index of MNS activity, in 30-month-old children as they observed videos of dynamic emotional and non-emotional facial expressions, as well as scrambled versions of the same videos. We found significant mu desynchronization in central regions during observation and execution of both emotional and non-emotional facial expressions, which was right-lateralized for emotional and bilateral for non-emotional expressions during observation. These findings support previous research suggesting movement simulation during observation of facial expressions, and are the first to provide evidence for sensorimotor activation during observation of facial expressions, consistent with a functioning facial MNS at an early stage of human development.
منابع مشابه
Neural correlates of action observation and execution in 14-month-old infants: an event-related EEG desynchronization study.
There is increasing interest in neurobiological methods for investigating the shared representation of action perception and production in early development. We explored the extent and regional specificity of EEG desynchronization in the infant alpha frequency range (6-9 Hz) during action observation and execution in 14-month-old infants. Desynchronization during execution was restricted to cen...
متن کاملMotor System Activation Predicts Goal Imitation in 7-Month-Old Infants.
The current study harnessed the variability in infants' neural and behavioral responses as a novel method for evaluating the potential relations between motor system activation and social behavior. We used electroencephalography (EEG) to record neural activity as 7-month-old infants observed and responded to the actions of an experimenter. To determine whether motor system activation predicted ...
متن کاملMu rhythm desynchronization by tongue thrust observation
We aimed to investigate the mu rhythm in the sensorimotor area during tongue thrust observation and to obtain an answer to the question as to how subtle non-verbal orofacial movement observation activates the sensorimotor area. Ten healthy volunteers performed finger tap execution, tongue thrust execution, and tongue thrust observation. The electroencephalogram (EEG) was recorded from 128 elect...
متن کاملEEG mu component responses to viewing emotional faces.
Simulation theories for the perceptual processing of emotional faces assert that observers recruit the neural circuitry involved in creating their own emotional facial expressions in order to recognize the emotions and infer the feelings of others. The EEG mu rhythm is a sensorimotor oscillation hypothesized to index simulation of some actions during perceptual processing of these actions. The ...
متن کاملEEG evidence for the presence of an action observation-execution matching system in children.
In the adult human brain, passive observation of actions performed by others activates some of the same cortical areas that are involved in the execution of actions, thereby contributing to action recognition. This mechanism appears to occur through activation of a population of action-coding cells known as mirror neurons (MN). In the adult motor cortex, performing actions and observing human m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 19 شماره
صفحات -
تاریخ انتشار 2016